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ABSTRACT

The concept of using "fluctuation diagrams" for

describing basic fluctuations in compressible flows was

reported by Kovasznay in the 1950's. The application of

this technique, for the most part, was restricted to super-

sonic flows. Recently, Zinov'ev and Lebiga published

reports where they considered the fluctuation diagrams in

subsonic compressible flows. For the above studies, the

velocity and density sensitivities of the heated wires were

equal. However, there are considerable data, much taken in

the 1950's, which indicate that under some conditions the

velocity and density sensitivities are not equal in subsonic

compressible flows. Therefore, the present report will

describe possible fluctuation diagrams for the cases where

the velocity and density sensitivities are equal and the

more general case where they are unequal.

-iv-



SYMBOLS

Cp specific heat at constant pressure

c v specific heat at constant volume

e' fluctuating voltage across sensor

E mean voltage across sensor

2 characteristic length

M Mach number

m mass flow

p pressure

q sensitivity ratio = su

ST o

m' To

RmTo= _ To

Rup = U--r7r
u p

I

u,To

_T ° - _ To

= £'To

RpTo _ T O

r
S m

sensitivity ratio = --

ST o

s sensitivity ratio

S
= --P-

ST o

S u velocity sensitivity

-v-



S density sensitivity
P

STo total temperature sensitivity

Sm

T o

T

u

u S

mass flow sensitivity

total temperature

static temperature

velocity

source velocity of sound in supersonic flow

2

(i+_ M )

= _(7-1)M

p density

7 specific heat ratio
c v

angle between plane wave and axis of probe which

is aligned with the flow

normalized fluctuation voltage ratio = E__

ST o

wave length
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Superscripts

instantaneous values

RMS values

mean values

Subscripts

vorticity

a entropy

sf far-field sound

sn near-field sound
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INTRODUCTION

The extension of hot wire anemometry to compressible

I

flows was described by Kovasznay in 1950. The concept of

"fluctuation diagrams" for describing the basic fluctuations

in compressible flows was reported by Kovasznay 2 in 1953,

where he showed the existence of three independent modes con-

sisting of vorticity, entropy, and sound. In these two

references, the application of the technique, for the most

part, was restricted to supersonic flows where the velocity

and density sensitivities of the heated wires were equal. In

addition to the fluctuation diagrams, Kovasznay also con-

sidered cases where only one mode existed thereby generating

the so called mode diagrams.

The fluctuation diagrams are graphical representation

of the combined fluctuations in a flow determined from hot

wire anemometer measurement. The fluctuation diagram can be

used to determine the level of fluctuation existing in a flow.

For supersonic flows the asymptote of the fluctuation diagram

represent the mass flow fluctuation and the intercept on the

ordinate represent the total temperature fluctuation. The

mode diagram is a special case of the fluctuation diagram

where only a given mode is assumed to exist. The considera-

tion of single modes can be often used to identify the

3

predominant mode existing in a flow

4 5

Recently Zinov'ev and Lebiga ' published reports where

they considered the fluctuation diagrams in subsonic compres-

sible flows where the velocity and density sensitivities were

equal. There is, however, a considerable amount of data which

-i-



show that under some conditions the velocity and density sen-
6_9

sitivities are not equal in subsonic flows . Therefore, in

the present report the fluctuation diagrams and mode diagrams

will be considered for the cases where the velocity and den-

sity sensitivities are equal and for cases where they are

unequal.
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RESULTS

VELOCITY AND DENSITY SENSITIVITIES EQUAL

Fluctuation Diaqram

In supersonic flows it has been shown that, from ex-

perimental results, the velocity and density sensitivities are

equal. For the test conditions of references 4 and 5 this

equality was also found to be true for subsonic compressible

flows. Under these conditions, the heat transfer from a

heated wire is a function of mass flow and total temperature

and the following equation is applicable for a constant cur-

l
rent anemometer (CCA) :

e' m" T_
E Sm m + (i)_ __ STo T O

Dividing equation 1 by the total temperature sensitivity,

squaring, then taking the mean, results in the following:

,' = r [mm-'] +l_oj - 2rRmT ° Too
(2)

This equation was obtained by Kovasznay and was used to gener-

ate fluctuation diagrams for supersonic flows. This equation

was also used in references 4 and 5 for subsonic compressible

flows.
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The general form of equation 2 represents a hyperbola

where the intercept on the 4 axis represents the total tem-

perature fluctuation and the asymptotes represent the mass

I0

flow fluctuation •

Mode Diaqrams

2

Kovasznay demonstrated that fluctuations in compres-

sible flows are composed of three independent "modes" for

small fluctuations. These modes consist of vorticity

(velocity fluctuations), entropy (static temperature

fluctuations), and sound (pressure fluctuations).

For the case of subsonic flows with a single mode,

equation 1 was used in Appendix A to obtain equation for the

mode diagrams. The mode diagrams for vorticity and entropy

are identical for subsonic and supersonic speeds (see equa-

tions A-3 and A-5).

When considering the sound mode, there are two pos-

sibilities for subsonic flows. The sound can be of the far or

near-field type. The sound field can be considered to be of

the far-field type if A/_ << I. For near-field sound the

quantity _/2 = I. The relationship between pressure and

velocity for the far-field sound is given by the plane wave

3

equation as :

u'_ 1 [p_i] cos8 (3)U- - _-_ sf
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For near-field sound, the relationship between pressure

and velocity can be obtained from the compressible Bernoulli's

equation as:

u 7M2 sn cos8 (4)

For far-field sound, the equation for the mode diagram

is derived in Appendix A and is given by equation A-7. The

equation for the mode diagram is identical to the one for su-

personic flow. However, for subsonic flow the value of cos8

can range between -i and i. In supersonic flow, for station-

1 The value of the cos8 forary Mach waves, the cos9 = -_.

3

moving sources of sound is :

cose = 1 (5)

An example of far-field sound for subsonic flow is

presented in Figure 1 for [_] = 0.01 and M = 0.50. The only
sf

case for subsonic flow which is similar to the case for super-

o

sonic flow occurs for 9 = 180 , ie. upstream moving sound. In

the test section of supersonic tunnels the dominant distur-

bance is also upstream moving sound relative to the flow

3

velocity .

flow.

Near-field sound is often not considered for supersonic

However, because of the low frequencies existing in
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subsonic flows, there is a high probability that much of the

sound in low speed wind tunnels is due to near-field sound.

The equation for the fluctuation diagram for near-field

sound in subsonic flow was derived in Appendix A by substitut-

ing Bernoulli's equation along with the equation of state and

the energy equation into equation 1 to give equation A-9.

Equation A-9 shows that there is not a single fluctuating

quantity for near-field sound since the fluctuation diagram is

made up of a pressure term and a static temperature term and

their correlation. For various values of p, _, and RpT , dif-

ferent fluctuation diagrams could be obtained. An example of

the fluctuation diagram is presented in Figure 2 for I_] =
k_J sn

0.01, ITS1 = 0.01, RpT = 1 and M = 0.50. This fluctuation
sn

diagram, where it is assumed that RpT _ = i, is significantly

different from the ones obtained for far-field sound. For 8 =

90 ° there are no mass flow fluctuations.

Multi-mode Fluctuation Diaqrams

In general, more than one mode would be expected to ex-

ist in a given flow. Equation 1 was used in Appendix A to

obtain fluctuation diagrams for multi-modes. First consider

the case where vorticity, entropy, and near-field sound

coexist in a flow but are uncorrelated, and the correlation

between pressure and static temperature for near-field sound

is assumed to be I. The equation describing this situation is

-6-



given by equation A-If. An example of the fluctuation diagram

for these fluctuations is presented in Figure 3.

The equation describing the combined effects of vor-

ticity and entropy is derived in Appendix A and is given by

equation A-12. An example of this fluctuation diagram is

presented in figure 4 for [_] = 0.01, ITS1 = 0.01,
and

O

M=0.50. The combined effect of vorticity and entropy fluctua-

tions for subsonic flow is identical to the one for supersonic

2

flow and has been described by Kovasznay .

Another highly probable combination of fluctuations is

vorticity and near-field sound. An equation describing this

situation was derived in Appendix A (Equation A-13). An ex-

ample of these two types of fluctuations is presented in

Figure 5. This fluctuation diagram is similar to the one ob-

tained for the combined effects of vorticity, entropy, and

near-field sound as shown in figure 3.

VELOCITY AND DENSITY SENSITIVITIES NOT EQUAL

Fluctuation Diagrams

Data were presented in references 8 and 9 which indi-

cate that under some conditions the velocity and density

sensitivities were not equal in subsonic flows, (Mach number

as low as 0.05 and slip flow conditions) and in transonic

flows. These data are in agreement with earlier results

presented in references 6 and 7.

-7-



In the present study, mode or fluctuation diagrams will

be presented for subsonic flows where the velocity and density

sensitivities are considered to be different. The following

equation is applicable for constant current anemometers (CCA)
11

in compressible flows :

, , , T O

e__E = - Su uU Sp a_p + ST ° % (6)

Squaring equation 6, forming the mean, and dividing

2

STo gives:

by

--_' = q + s + + 2 q S U___A
U p

GO _O (7)
- 2 q RuT ° u T o 2 s RpT ° P To

This is the general equation for a wire mounted normal

to the flow in compressible flows where S u , Sp. This is a

single equation with six unknowns. In principal, this equa-

tion can be solved by operating a single wire at six overheats

and solving six equations to obtain the three fluctuating

quantities and their correlations. In the past it was

generally stated that the calibration of the wire cannot be

made sufficiently accurate or the velocity and density sen-

sitivities cannot be made sufficiently different to obtain a

suitable solution using this technique. Recently a three wire

technique ' was used to make measurements based on an equa-

tion similar to equation 6 but applicable for a constant

-8-



temperature anemometer (CTA). These results indicated that

under some conditions the density sensitivity could be two to

three times greater than the velocity sensitivity. Under

these conditions it should be possible to use a CCA operated

at many overheats to obtain solutions to equation 7 using a

multiple linear regression technique. The results obtained

using the three wire probe technique with a CTA and a single

wire probe with a CCA could be compared to determine the pos-

sible accuracy of the two systems.

The major difficulty in making these measurements

using the multi-wire technique of references 8 and 9 is making

the velocity and the density sensitivities sufficiently dif-

ferent for the three wires. The major difficulty of using a

CCA and equation 7 to obtain the three fluctuations and their

correlations would be to insure that the velocity and density

sensitivities are sufficiently different over the range of

overheats so that the sensitivity matrix for equation 7 is

well conditioned.

Assuming that the velocity and density sensitivities

are sufficiently different so that solutions for equation 7

are possible, what are the characteristics of the fluctuation

diagrams? In equation 7, 4 is a function of q and s, there-

fore, the fluctuation diagram exists on a three-dimensional

surface, a hyperboloid, rather than a plane as for the case

when S u = Sp. However, the important information exists in

the 4-q and 4-s planes. For example when s = 0, equation 7

reduces to an equation for a hyperbola in the 4-q plane where

the asymptote gives the velocity fluctuations. If q = 0,

again equation 7 reduces to an equation for a hyperbola in

-9-



the 4-s plane and the asymptote represents the density fluc-

tuations. When q and s are zero, the intercept on the 4 axis

gives the fluctuations for the total temperature. In planes

parallel to the q-s plane, the locus of points of the fluctua-

tion diagram is governed by the velocity and density

fluctuations and their correlation. The cross product term,

qs, requires a rotation of the axis before the characteristics

of the locus can be identified. For example, if it is assumed

_o

_ = RuT ° •that _u = 0.01, _P = 0.005, To 0.001, Rup -0.8, = -0 6

and RpT ° = 0.5, the locus of the points in planes parallel to

the q-s plane are ellipses rotated 66.6°from the q axis. The

locus of points of the fluctuation diagram on the surface of

the hyperboloid will depend on the relative changes in q and s

as the overheat of the wire is changed.

Although the fluctuation diagram exists on the surface

of a hyperboloid, the fluctuations can be determined from the

intersection of the hyperboloid with the 4-q and 4-s planes.

Because of this the fluctuation and mode diagrams will be

defined as the traces of these intersections in the noted

planes. A general schematic representation of the fluctuation

diagram for equation 7 is presented in figure 6. Work along

this line was considered by research personnel at Novosibirsk,

USSR. However, for their flow conditions S u was apparently

_2
equal to S and the more general solution was not required .

p

If it is assumed that q = s, equation 7 reduces to the

conventional equation for supersonic flow. Therefore, the

mode diagram for supersonic flow lies in the 4-r plane which

-i0-



lies between the 4-q and 4-s planes.

tion is presented in figure 7.

A sketch of this situa-

Mode Diaqrams

If it is assumed that the fluctuations are only vor-

ticity, it is shown in Appendix B that equation 7 reduces to

equation B-3. Results obtained using this equation for the

I_]_ = 0.01 are presented in Figure 8. The modecase where

diagram for vorticity is identical to the one for supersonic

flows except that S m is replaced by S u in the equation. The

mode diagram lies in the 4-q plane. Equation B-3 shows that

when 4 = 0 then q = 8- Also, when q = 0 then:

which represents the total temperature fluctuation due to vor-

ticity.

Next assume that the fluctuations are all entropy.

Then equation 7, as shown in Appendix B, reduces to equation

B-4. Equation B-4 is identical to the one for supersonic flow

except that S m is replaced by Sp and the mode diagram lies in

the 4-s plane.

An example of the mode diagram for entropy when

= 0.01 is presented in figure 9. Here again, only the
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4-s plane is presented. When 4 = 0 then s = -_, and when s =

0 then:

(9)

which represent the total temperature fluctuation due to

entropy fluctuations.

Now assume that all the fluctuations are far-field

sound (that is _/2 << I). The equation (B-5) for this case is

derived in Appendix B. Equation B-5 represents a three dimen-

sional surface in the 4, q, s coordinate system and the mode

diagram lies on this surface. The intersection of the surface

in the 4-q and 4-s planes are given by equations B-6 and B-7,

respectively. In this report these intersections are defined

as the mode diagrams.

An example of the sound mode for the far-field is

presented in figure I0. Note that the 4-s plane has been

rotated into the plane of the paper. Figure 1 and I0 show

that there is a significant difference between the mode

diagrams for far-field sound for the cases where S u = S p

for the case where S u _ Sp.

and

Near-field sound can be considered to be either incom-

pressible or compressible. From Appendix B the equation for

near-field sound for compressible flow is given by equation B-

14. As for the case where Su = Sp, this equation consist of

pressure and temperature terms and their correlation. For s =

-12-



0 and q = 0, equation B-14 reduces to equations B-15 and B-16,

respectively.

An example of this type of fluctuation diagram is

presented in figure ii. Again the 4-s plane has been rotated

into the plane of the paper. This result is again not general

since different assumptions about the fluctuation levels and

their correlations would result in different fluctuation

diagrams.

In subsonic flow it is possible for sound to enter the

test section from any direction since cos8 can range from -i

to i, and it is probable that more than one source can con-

tribute to the sound field in the test section. The sound

mode is further complicated by the possible existence of near

and far-field sound sources whose effect in the test section

is a function of frequency. In addition, the sound can be

reflected, refracted, and diffracted in the wind tunnel cir-

cuit in a manner which depends on the geometry of the tunnel

and the characteristics of the sound.

Because of these problems which make the sound mode ex-

tremely complicated, it is doubtful that a single sound mode

would be observed in subsonic wind tunnels unless it was in-

troduced artificially. The correct analysis of the

characteristics of sound would probably require measurements

using multiple sensors and various data reduction methods

based on cross correlation techniques.

-13-



Multi-mode Fluctuation Diaqrams

The existence of more than one mode can also be con-

sidered for the case where S u _ Sp. First consider the case

where the fluctuations consist of vorticity, entropy, and

near-field sound where the fluctuations are assumed to be un-

correlated. The equation for this case is derived in Appendix

B and is given by equation B-17.

When s = 0 and q = 0, equation B-17 reduces to equa-

tions B-18 and B-19, respectively. An example of this

fluctuation diagram is presented in Figure 12 for the case

where [_I ' [_] , [_) , ITS1 = 0.01, Ru(T 1 = i, and M =
o sn sn a

0.50. This figure shows that, for these assumptions, the

o

fluctuation diagram in the 4-q plane for 8 = 0 and 180 are

identical. Also, there is very little difference between the

fluctuation diagrams in the 4-s planes for the values of 8

assumed.

Equation B-21 shown in Appendix B illustrates the case

where vorticity and entropy coexist. If s = 0 and q = 0,

equation B-21 reduces to equations B-22 and B-23, respec-

tively. An example of the fluctuation diagram for this case

is shown in Figure 13 for I_l, [T_] = 0.01, RuT = 1 ,
and M

= 0.50.

Finally consider the case where vorticity and near-

field sound coexist and there is no correlation between the

fluctuations. The equation for this situation is derived in

-14-



Appendix B and is given by equation B-25. For s = 0 and q =

0, equation B-25 reduces to equations B-26 and B-27, respec-

tively. An example of this type of combined fluctuation is

shown in Figure 14 for , , = 0.01, Rup 0,
sn sn

RpT_ = 1, and M = 0.50. For the conditions assumed, there are

no density fluctuations. This result, however, depends on the

conditions assumed for the fluctuation levels and their cor-

relations.

Very little experimental data are available in the

literature describing the mode diagrams for subsonic compres-

sible flows. A limited amount of data were presented in

references 4 and 5 for a case where sound was artificially in-

troduced into the test section and dominated the disturbance

levels. Vorticity and entropy were also artificially intro-

duced into the test section where it was assumed that their

levels were about the same and the sound level was small. For

these cases it was determined that S u = Sp Examples of fluc-

tuation diagrams obtained from ref. 4 are presented in figure

15. The data shown in figure 15-a were obtained when sound

was introduced into the test section upstream of the hot wire

probe. This fluctuation diagram agrees in shape with the

results presented in figure 1 for far-field sound with 9 = 0,

i.e., down stream moving sound.

The results presented in figure 15-b, for the case

where vorticity and entropy dominated the flow, is similar to

the results presented in figure 4 for RmT _ between 1 and O.

This similarity would be improved by using the correct Mach

-15-



number and selecting various values for u, T_, and RmT in

equation A-12.
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CONCLUDING REMARKS

The present paper extends the fluctuation diagrams

developed by Kovasznay for supersonic flows to subsonic com-

pressible flows where S u = Sp and to the more general case

where S u , Sp. The fluctuation and mode diagrams developed by

Kovasznay were limited to supersonic flows where the velocity

and density sensitivities of the sensor were equal. For this

case and for subsonic flow where S u = Sp, the fluctuation

diagrams could be pictured as existing in a plane. In sub-

sonic slip and transonic flows, where the velocity and density

sensitivities can be different, it was shown that the fluctua-

tion diagrams could be pictured as existing on a three-

dimensional surface in the 4, q, s coordinate system.

However, the important information would exist in the 4-q and

4-s planes. For this case, the fluctuation diagrams were sig-

nificantly different from those in supersonic flow and in

subsonic flow where S u = Sp. This was particularly true for

the sound mode.

When S u = Sp for subsonic flow, the vorticity and

entropy mode diagrams were identical to those for supersonic

flow. However the sound "modes" could be significantly dif-

ferent from those for supersonic flows.

For cases where the velocity and density sensitivities

are sufficiently different to permit the calculation of the

velocity, density, and total temperature fluctuations, the

fluctuation diagrams and mode diagrams should be useful for

identifying the dominant mode existing in subsonic slip or

transonic flows.
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APPENDIX A

CASES FOR WHICH

THE VELOCITY AND DENSITY SENSITIVITIES ARE EQUAL

If S u = Sp then the equation for a CCA is:

T I
e' m' o

_-- = - Sm _-- + STo T o
A-I

Assuming that the only fluctuation is vorticity gives:

m' _ u' o'

m u p

To [uUlu_i'= m! = 0; -- =
u _ ; p T O

A-2

Substituting the above equations into equation A-I, dividing by

STo , squaring, and taking the mean gives:

__ 2

4' = (N - r) A-3

This equation is identical to the one obtained for supersonic

flow.

Next, assume that all the fluctuations are entropy, then:
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= = - ; _0"0 ----c* ;

A-4

Substituting the above equations into equation A-I gives:

2

2

4" = (r+_)
O

A-5

Next assume that all the fluctuations are far-field sound. Then:

T Q

u sf cos8 ; P • sf; T ° _ (p J sf

A-6

I

T O

T-_ = _ _[p_] [uU___'] m' 1 [p_] 1 [p_lsf + _ sf; -m-- = -_ sf cos0 + _ sf

Substituting the above equations into equation A-I, dividing

by STo, squaring, and taking the mean gives:

n 2

4' = [_(_-I)M + _cos0 - r(cos8 + M)] _e A-7

Assuming near-field sound gives:

-20-



u _M
cos0 ;

p sn sn

mmI Isn
sn _M

cos8 A-8

sn
sn 7M

cos8

Substituting the above equations into equation A-I, dividing by

STo , squaring, and taking the mean gives:

2

4' = [(r - _)cos0 - _M ] _ tpjsn
M

2

2{ j(r + a) + A-9
sn

2(r + a)[r(cos0 - 7M ) - #cos0] -----r-- RpT _ sn
7M sn

Next consider the case where more than one mode exist in the

flow. First consider the existence of vorticity, entropy, and

near-field sound where it is assumed that there is no correlation

between the modes:
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u _ _M
cos0

P'=-P [_I° + [pP-[]sn- [T_] sn

A-10

m__'=(uU__'l[ Isn
m _ 7M

cos8- [_]a+ [p_]sn-[_I sn

T_T% = _ [_I_ - _---!rl>M [_]sn cos0 + a{ IT']ITJo + [_Isn}

Substituting the above equations into equation A-I , dividing by

STo , squaring, and taking the mean gives:

2 2

- + [r(TM -cosS)+_] 2 4 sn
' = (_ r) _ 7 M

(r+a)

//T_oJo sn

A-II

2

2 [r(TM - cosS) + _](r + a)---_1 rR_T _
_M sn

Next consider the combined effects of vorticity and entropy.

Substituting equations A-2 and A-4 into A-I gives:
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2

[uU_.l+ (_+r)4' = (E-r) w a+ 2(_-r) (_+r)RuT _
A-12

Finally consider the combined effects of vorticity and near-

field sound where it is assumed that there is no correlation

between the fluctuations:

2

+(r+_) + [r(TM-cos0)+_] 2 4 sn
' = (8-r) _ sn 7 M

-2 [r (_M2 -cos8 )+P ] (r+_)--_ 1 RpT _ sn
7M sn

A-13
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APPENDIX B

EQUATIONS FOR MODE DIAGRAMS IN

SUBSONIC COMPRESSIBLE FLOWS FOR CASES WHERE Su _ S P

For compressible flows the following equation was presented

in reference ii for a constant current anemometer:

, , t Toe _ u ___

E Su u Sp p + STo % B-I

Squaring equation B-l, dividing by , and taking the mean
ST o

gives:

2 21uI I4' = q + s + [T_ + 2 q s Rup U p

To _ To
2 q RuT ° u T O - 2 s RpT ° p To

B-2

Equation B-2 is the general equation that relates the voltage

fluctuation across a heated wire to fluctuations of the flow

variables.

Assuming that all the fluctuations are due to vorticity and

using equation A-2 and B-I gives:
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2

2 2_o (q _)
B-3

The vorticity mode is represented by straight lines, one of

which has a negative slope for values of q between 0 and 8. The

other line has a positive slope for q greater than _.

Assume that all the fluctuations are due to entropy, and

using equation A-4 and B-I gives:

2

2' = (s + o)

a

B-4

There are two possible solutions for the sound mode: far-field

sound and near-field sound. First consider that all of the fluc-

tuations are of the far-field type, then substituting equation A-

6 into B-I gives:

4' = 2--Y-r
7 M P sf

((_ - q) cos8 + [_(7 - i) - s] M) B-5

If s = 0 then:

--2 1 2
-n--r ((# q) cos8 + _(_ -i) M} B-6

M sf

If 4 = 0 then:
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_ -I)M + fl B-7
q = cos_

and if q = 0 then:

__ I 2

4' =--r-7
M sf

{fl cos0 + _(7 - I) M} B-8

Now assume that q = 0 in equation B-5, then:

2 1¢" =-T-_
M sf

2

(fl cos8 + [_(7 - i) - S] M) B-9

For _ = 0:

s = fl cosO
M + a(7 - i) B-10

and for s = 0:

• 2

2 1 24' = _ {_ cos8 + a(7 - I) M) B-II
M sf

Finally, assume that all the fluctuations are of the near-field

type. For this assumption the flow can be considered as being

either incompressible or compressible. First consider the in-

compressible case where p' = 0. Under these assumptions equation
p

B-I becomes:
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• • Te u
_-- = (fl STo - Su) _-- + _ STo _ B-12

Using equation A-8 in the equation B-I with p' = 0 dividing by
p

STo , squaring the equation, and taking the mean gives:

22 1 2 2 24" = _ (q - fl) cos e + _ +
M sn sn

M 2 " (q - fl) RpT sn sn
B-13

Equation B-13 shows that for near-field sound there are two fluc-

tuating quantities, a pressure term and a temperature term, and

their correlation. The fluctuation diagram lies in the 4-q plane

for the incompressible flow case.

Next consider near-field sound for compressible flows. Using

equation A-8 in the equation B-I dividing by , squaring the
, ST 0

result, and taking the mean gives:

= cos8 (q - fl) - 7M 2s 2 sn +
M

(a + s) + B-14
sn

sn
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Again the near-field sound in compressible flow is made up of

two fluctuations and their correlation. The fluctuation diagram

lies on a surface in the 4, q, s coordinate system.

If s = O, equation B-14 becomes

2 I 2

4' = cos8 (q - #) 2 4 sn
M

2 a [cos8 (q _)] 1
-- 2

7 M
RpTC Isn[ soB-15

If q = 0, then equation B-14 becomes

2

' = -p cos8 -_M 2s 2 4
7 M

sn+(a + s)

2 (_ + s) _cos0+_M s 2
7 M

n[%]snB-16

For most flow conditions more than one mode will probably be

present in the flow. Some of the possible multi-mode conditions

will be considered. First consider the coexistence of

vorticity, entropy, and near-field sound where they are uncorre-

fated. Substituting equations A-2, A-4 and A-8 into B-I gives:

-28-



- + (s+_)4 ' = (fl q)

2

+
sn

+

2

2 21.[_sn 2(q - fl) cos 8 +
M

B-17

+ [%]snI Isn
If s = 0, this equation becomes:

• -- - ÷° ÷ [Tj ÷(P q) _ sn

2

(q - fl) COS 8 +
M

B-18

If q = 0:
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2

4' II lI l:J21uU) . T.= + (s+_) +
_ sn

+

2

_Vtp Jsn_°_0- B-19

2_(s + _) 12 RpT _ sn
_,M sn

Next consider the coexistence of vorticity and entropy.

Equations A-2, A-4, and B-I give:

e #

_-- = (_STo - Su)(_] +(s p B-20

2

Squaring equation B-20, forming the mean, and dividing by STo

gives:

4' = (p - q) + (s + _) +
03

a

B-21

Equation B-18 shows that the fluctuation diagram for the combined

effects of vorticity and entropy lies on a surface in the 4, q, s

coordinate system. The intersection of the surface with the q-

plane can be found by letting s = 0. This gives:
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2

-2 _(uU_.l, = (fl - q) + a +

Co 0

B-22

If q = 0, the intersection of the surface with the 4-s plane is

given by:

2

_(uU_.) 24' = _ + (s + _) +

B-23

Finally, consider the combined effects of vorticity and near-

field sound. For these combined fluctuations, equations A-2, A-8

and B-I gives:

e luU--I-- = (flSTo- + (S + +E Su) _ P sn

(SuCOS8 - SpTM - fiSToCOSS)--!-i 2M sn

B-24

2

Squaring equation B-17 forming the mean, and dividing by and
, ST °

assuming that there is no correlation between vorticity and sound

gives:

-31-



2
2

21 ]= -- +(_ q) B-25

2

(q - fl)cos8 - 7M s] _ sn + (s +a) +
M sn

2

2(S + _)[(q - _)cos8 - 7M s]
1

2

M RPT   sn[ sn
If s = 0 then:

2 2

21uU_,] i' = (_ - q) + [ (q - _)cosS] --_--[ sn
M

+

2

2

[_']sn + 2_[(q- p)cos8 ] I_ M2 RpT _[_Isn [_--_]
sn

B-26

If q = 0:

2
2 2

= _ _ + [-_cos0 - 7M s] _7 M sn+
B-27

2

- 2(s+_)[_cos0 + 7M s] 1
----T-- RpT _ sn

sn 7 M sn
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Figure 1. Far Field Sound mode
Su = Sp; (_'/p)., = 0.01; M=0.50
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Figure 2. Near field sound fluctuation diagram;
S,, = Sp; (l_/P),n = 0.01: (T /T ),n = 0.01

RpT = 1.0; M = 0.50
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Figure 3. Fluctuation diagram for multi-mode fluctuations
of vorticity, entropy and near field sound;

(_/P.)sn. = 0.01; (_/u),_ = 0.01; (T../T®5)_)n = 0.01;
(T-yT)_ = 0.01; RpT.. = 1.00; M = .

-36-



N

qb

0.020 ........

0.015

0.010

0.005

v v v v v v v •

oeeee R,T. = 1.0
a-_eea R.,T. = 0.5

R,,,T. = 0.0
Rml".= -0.5

*-ee_ R,T. = --1.0

• • 0.2 0.4 0.6 0.8 I .0

r-

Figure 4. Fluctuation diagram for multi-mode
of vorticity and entropy; S. = Sp
(_/u)_ = 0.01; O'../T..)_ = 0.01; M

fluctuations

= 0.50
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Figure 7. Fluctuation diagram for supersonic flow
in the _,q,s co-ordinate system; q - s
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Figure 8. Vorticity Mode; u/u = 0.01
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Figure 9. Entropy Mode; _=/T== 0.01
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Far Field Sound Mode;
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Figure 11. Fluctuotion Diggrem for Neer Field Sound

M = 0.50, _/p = 0.01, "I',JT® = 0.01,
0 = 180 ° , Su _ Sp
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Figure 12. Fluctuation diagrams for vorticity, entropy

and near field sound; S,, ,, Sp; M = 0.50;
il,,(T,.)_ = O; Rr_).O;._,,= O; Ru(T.), = O;

/p),_, = 0.0_. ("l_Tu)_ p 0"01;010
T./T.),, = 0.01 ; (7./T.)p = .
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Figure 14. Fluctuation diagram for vorticity and

near field sound; Su,' Sp; RpT= = 1.00;
M = 0.50
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Figure 15. Measured Modes in Subsonic Flow, Ref. ,3
(a) Far-Field Sound Modes; M = 0.72
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(b) Vorticity end Entropy Modes; M = 0.72
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